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NATIONAT, AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1655

PREDICTION OF VELOCITY REQUIREMENTS FOR MINIMUM TIME
ABORTS FROM THE MIDCOURSE REGION
OF A LUNAR MISSION

By Robert B. Merrick and George F. Callas

SUMMARY e

FQ/ClL"
i/

Problems associated with quick returns to the earth from the midcourse region
of a lunar mission have been examined by relating errors in perigee height to some
of the errors inherent in any abort maneuver.

Abort trajectories were computed at several ranges and with various fuel
capabilities on both the outgoing and incoming legs of a typical circumlunar
trajectory. The representation of the physical system included the gravitational
effects of the sun and the moon and the second harmonic term of the earth's
oblateness, but abort rocket firings were taken as impulses.

A Keplerian trajectory was used for determining the direction of the abort
rocket thrust in the orbit plane and a modification to this approach is presented
which markedly reduces the altitude error, at perigee, due to the two-body
approximation of the four-body physical system. This modification is based on a
reference trajectory concept.

Four sources of error, other than the two-body approximation effects, were
considered and their influence upon the perigee height at return was examined
statistically. These error soOurces are the inaccuracy in the knowledge of posi-
tion and velocity at abort and the inaccuracies in the magnitude and aiming of the
abort rocket. The aiming error in the thrust applied during abort was responsible
for major perigee deviations.

The velocity increments necessary to correct the errors incurred by the abort
maneuver were computed at various points on the return trajectory. Less than
5 percent of the abort velocity increment is sufficient to correct these errors if
the correction is applied at a range of 100,000 km from the earth.

INTRODUCTION

A substantial effort has been devoted to analyzing abort procedures for the
launch phase of flight of a manned spacecraft but, aside from the work of Kelly



and Adornato (ref. 1) and Miller and Deyst (ref. 2), little work has been done on
the capabilities and requirements of midcourse aborts.

There appears to be little possibility that an abort system designed for
launch conditions would be suitable for midcourse abort since the requirements
for speed of execution and aiming accuracy have opposite emphasis. The launch
abort must be executed immediately, must have very high thrust because of the
importance of time, but requires only moderate aiming accuracy (ref. 3), whereas
the midcourse abort has less need for speed of execution but requires maximum
aiming accuracy.

The precise determination of the direction of the rocket thrust in midcourse
aborts would be straightforward if the gravitational attractions of the sun and
moon were of negligible consequence in earth-moon space. Since these gravita-
tional attractions do have considerable effect, it is highly desirable that the
prediction of the abort velocity allow for these forces in some fashion.

This report is devoted to the minimum return time abort in which time is all
important and the selection of a landing site is secondary. This type of abort
would be used when the quickest possible entry into the atmosphere was desired,
for example, in the event of a crack in the cabin wall, or of an impending major
radiation storm. The minimum time return also provides a basis for evaluating
the return time penalty associated with selection of = landing site. Aborts for
which return time is not a primary factor are not considered herein.

This report presents the details of an abort navigation system which
determines the trajectory that returns safely in minimum time and discusses the
performance of this system when there are errors in position and velocity at the
time of abort and in the magnitude and direction of the applied velocity incre-
ment. The navigation system presented here uses a simple modification to two-
body dynamics to obtain a better approximation to the four-body results.

NOTATION
e eccentricity
Re range from earth
Rm range from moon
Rg range from sun
Rp perigee radius
T time
v velocity
Vg horizontal component of velocity



VR radial component of velocity

Vo initial horizontal component of velocity

VRO initial radial component of velocity

Vp velocity at perigee

X, Y, Z Cartesian coordinates of vehicle's position

Xm> Yms Zm Cartesian coordinates of moon's position

Xgs Yo,y Zg Cartesian coordinates of sun's position

A" incremental velocity

Np incremental perigee velocity

Y flight-path angle

8 true anomaly

o) dimensionless coefficient, Rp/Re
Superscripts

(M) derivative with respect to time

() vector quantity

Subscripts

e earth
H horizontal

i, J, k¥ unit vectors on Cartesian axis

m moon
0 initial value
js] perigee

R radial



PRELIMINARY CONSIDERATIONS

Applicable Midcourse Regions

Ag noted in the introduction, aborts considered here are based on a decision
to reduce the remaining flight time to the smallest possible value consistent
with a safe atmosphere entry but without regard to the touchdown point. This
approach leads naturally to separating a circumlunar trajectory into three phases
as shown in sketch (a). From the launch at point A to some point B, the location

of which is fixed by the available
on-board fuel, flight time can be
8 reduced by preventing the circumlunar
] c phase of flight with an abort maneu-
ver. Beyond point B no time can be
saved by use of on-board thrust until
perilune is passed. TFrom perilune to
point C on-board thrust can reduce
flight time but calculation of the
abort velocity increment is undesira-
bly complex this close to the moon.
Beyond point C the abort manuever is
Sketch (a) less critical and flight time can be
reduced at the expense of increased entry velocity. Minimum time aborts are not
feasible beyond point D since the potential reduction in flight time decreases
and the entry velocity penalty increases as the abort point is moved nearer the
earth.

This report then, presents data for aborts initiated on the outbound leg of
the trajectory from point A to B and on the inbound leg of the trajectory from
point C to D.

To examine these abort considerations in a quantitative manner a ballistic
circumlunar trajectory starting from Cape Canaveral on February 10, 1960, was
selected as a reference. The details of this trajectory are considered later.

After preliminary investigation, point C was fixed somewhat arbitrarily at
the moon's nominal sphere of influence boundary (£6,000 km) and point D was taken
at 200,000 km from the earth. The value for point D was selected after consider-
ing the approximate relationship for the increase in perigee velocity associated
with inbound aborts with constant perigee.

v
AVP = AV (‘\E>

When the distance from the earth is large, the velocity of the spaceship is small
and the quantity in the brackets is small, increasing at 200,000 km to 0,134 for
the reference trajectory.



Fuel Available

The amount of fuel available for abort purposes on the lunar orbiting
mission will be substantial since a velocity increment of roughly 1 km/sec is
needed near perilune to put the space vehicle into circular orbit about the moon,
and another velocity change of nearly the same magnitude is needed to depart from
the moon and return to the earth. With an allowance for midcourse corrections
and a reserve there will be a velocity increment of about 2 km/sec available for
emergencies while approaching the moon.

For a strictly circumlunar mission there need not be as much fuel on board.
Results are presented in this report for velocity increments from 1/2 to 2-1/2
km/sec. Abort performance falls off markedly below the level of 1/2 km/sec.

ANATYSTS

The Mathematical Model

In the development of the equations of
motion a restricted four-body system was H O
assumed with a spherical and homogeneous ® rmicie (X ¥s,2s)
sun and moon. The second harmonic term of oxw
the earth's oblateness was included. The
coordinate system is Carteslan and geocen- SM@&)
tric with the 27 axis along the earth's oo S
polar axis, positive to the north. The
positive X axis is in the direction of
the vernal equinox and the Y axis is
oriented to form the right-handed system
shown in sketch (Db).

The equations of motion are, from Sketch (b)

reference L

Res Re‘ ReZ J Am Rms AS RSB

w i 2 u ' na (Y - Yo) peY
Y - e{l+J(R—-> (1—5——Z2>]-—m(y-ym)-um’;‘-s - —
Re € Re ~ Am Rm Ag Rg

. u 2 W bpZm  Hs(Z - Zg)  ©eZ
= eg [l + J §2_> (3 -5 _Z_2.>j\ - ——m-g(Z _ Zm) _ mI;I _ s - s/ _Fs 2
Re € e AN Rm Ag Rg



where

Re = Jx2 4 v2 4 72

2 2
Ry = kae + In + Zp

Rg = Jigz + Yo + 25%

Ap =X - Xm)2 + (Y - Ym)2 + (Z - Zm)2

De = J(X - X)2 + (Y - Y5)2 + (2 - 2g)2

3.986135x10%% m>/sec?

He =
Hp = 4.89820x10%2 m3/sec?
hg = 1.3253x102° m®/sec?
a = equatorial radius of the earth = 6.37826x10° m
J = 1.6246x1073

The terms involving only distances between the earth and moon or earth and
sun, such as mem/Rms: arise from the fact that the coordinate system is not
inertial. These terms account for the accelerstion of the coordinste system with
respect to inertial space.

The equations of motion for the vehicle are solved by means of a Cowell
"second-sum" method. A fourth-order Runge-Kutta method is used to start the inte-
gration and to change the step size during the flight. The position of the sun
and the moon are determined by interpolation of data from magnetic tape ephemer-
ides. Within the sphere of influence of the moon, taken as 66,000 km from the
moon, the origin of coordinates is translated to the center of the moon.

All abort trajectories obtained with this mathematical model resulted from
perfect abort maneuvers; that is, the knowledge of position and velocity before
abort was exact and there was no error in the control of the magnitude and direc-
tion of the abort thrust. Following such a maneuver, a trajectory to perigee was
computed with the four body simulation. Error analyses were then made for devia-
tions about these nominal abort trajectories.

O



The Two-Body Analysis

The objective throughout this report is to determine the thrust direction
which will return the space vehicle to earth in minimum time and, naturally, it
is desired to make this determination the simplest compatible with satisfactory
accuracy. There are design restrictions which must be satisfied because of the
limited fuel supply or velocity increment capability, and the necessity of
achieving safe entry conditions.

The four-body nonlinear differential equations of motion given previously
are difficult to solve and it is unlikely that a simple means for predicting abort
velocity requirements will be derived from them. The equations that describe the
motion of a space vehicle of negligible mass moving 1n the gravitational field of
a spherical homogeneous earth are much simpler. This restricted two-body system
has known solutions in which the guantities of interest are related by algebraic
equations rather than differential equations; consequently, a two-body analysis
is very advantageous if sufficient accuracy can be attained. Therefore, in the
following paragraphs an equation will be developed, based on the two-body system
just discussed, which specifies the velocity increment and reentry conditions.
Tater, suitable corrections will be added for the secondary effects presently
neglected.

On lunar trajectories, satisfactory entry conditions may be expressed by &
specified vacuum perigee. In this report a specified perigee of 6,M5O km is con-
sidered. With this perigee and with eccentricities between 0.85 and 1.15, it may
be determined from the relation

e

€ -tany = e Jiﬁpz(l + e) + ReRp - RE(1L - @)

Ro6 RpJ1l + e
that the flight-path angle at 400,000 feet (121.92 km) is -5.0 io.250.

Consider now the two-body system previously mentioned, the space vehicle of
negligible mass moving in the gravitational field of a spherical homogeneous
earth. In this system the minimum time to return to a prescribed perigee from a
given range with a restricted velocity increment is given by an orbit in the orig-
inal plane of motion; that is, the orbital plane is not changed by the abort fir-
ing. A proof of this fact is given in appendix A.

It has now been shown that a planar analysis is sufficient to develop the
proposed two-body prediction equation. The development is continued with the
general equation of a conic trajectory,

2 _ e pe(l - e)

ve = Re Rp
and at perigee
sz _ e pe(l - e)
Rp Rp



SO
1 1
Ve - v 2 = (L— - =
Since the angular momentum of the vehicle immediately after an abort is the same
as the momentum at perigee, we have
ReVy

b Rp

also
VE = Vy® + Vg2

Substituting these two equations into the previous one gives the hodograph
equation
2
V2 = N Vo2 4 cHeRy (/ 1 (1)
Re® - Rp2 R Re \Re + R

This is another form of the general conic equation. Now if Rp 1is a fixed
vacuum perigee helght and if Re 1is a fixed range at which the abort firing is
to be accomplished, then the velocity vector after abort must satisfy this equa-
tion; that is, any conic trajectory, of whatever eccentricity, as long as it has
the desired perigee height satisfies this equation at any specified range. A
quantitative pilecture of the velocities which must exist after an abort firing is
given in figure 1 for Rp = 6,450 km and various ranges, Re.

The total velocity vector achievable by an abort firing is determined by the
components of the velocity just before abort, Vgg and Vo, and the fuel supply or
velocity increment capability available. Graphically, the achievable velocities
which will effect a safe entry are those that lie within the circle and also lie
on the hodograph plot in sketch (c).

Examination of this sketch shows
fadtee of eircle is Hodograpt. equation plotted several possibilities. 1If the circle
cal to the wrailuble for & particular R, Ry of achievable velocities is very

“ small, corresponding to a negligible
- velocity increment, no solutions will
exist. Physically, this corresponds

v, Quickest possitle return to a space vehicle which has run out
) of fuel or has a badly damaged engine.
" Without some velocity increment

capability the reentry conditions
cannot be changed.

If the circle of achievable
veloclities is somewhat larger, or if
the symmetrical branches of the hodo-
graph are closer together because of
increased range (see fig. 1), then
there will be one branch of the hodo-
graph going through the circle as
shown in sketch (c).

Sketch (c)



The third possibility is that both branches of the hodograph will go through
the circle of achievable velocities. The usual situation for the data considered
in this report is that the velocity increment and the range are both large;
therefore, the circle intersects both branches.

The solution on the left branch of the curve corresponds to an abort
maneuver in which the direction of the spacecraft's orbit about the earth 1s
reversed. This will result in retrograde reentries which are undesirable because
of the higher velocity of the spacecraft relative to the atmosphere rotating with
the earth, but they may be tolerable and they must be considered in point return
analyses. These left-branch returns are not considered further in this report
since it is shown in appendix B that the minimum flight time to perigee is asso-
ciated with that achievable hodograph point for which Vg 1is an algebraic mini -
mum. This point, marked in sketch (c), is always on the right-hand branch of the
hodograph. To obtain the components of velocity which give the minimum flight
time return a fourth-order algebraic equation must be solved. This prediction
equation is derived in appendix C.

Effects of Two-Body Analysis

When the direction of the abort rocket firing is determined with a scheme
that ignores the moon and the sun, substantial error is incurred. Figure 2 shows
the perigee miss distance as a function of range for aborts from the base trajec-
tory. Near the earth, as expected, two-body predictions suffice, but at only
100,000 km, the 0.50 km/sec velocity increment abort misses desired perigee by
290 kilometers. With larger velocity increments the error is reduced since there
is less return time for the moon-sun effects to perturb the intended abort tra-
jectory, and the apogee of the return trajectory is less distant from the earth.
The data in figure 2 show that the error is far too great for most cases of
interest and this establishes the fact that predictions of abort velocity
requirements cannot ignore the effects of both the moon and the sun.

On lunar trajectories with approximately the same enroute times, the lunar
perturbations will vary only slightly with the particular day or month of launch
since the geometry of the earth-moon-vehicle relationship is essentially constant.
The major effect of the moon's gravitational pull might then, with reasonable
generality, be incorporated into the prediction equation to materially shrink the
lunar bias. To ascertain the validity of this approach, some computer runs were
made to isolate the perturbations due to the moon and the sun separately. The
gravitational constant of the sun was set equal to zero for one series of runs,
and then another series was run with the gravitational constant of tle moon set
equal to zero. These results are presented in figures 3 and L.

These figures show that the gravitational pull of the moon has the larger
effect but they also show that the gravitational pull of the sun is substantial
if either the range at abort is large or only moderate amounts of fuel are
available. It is now apparent that even if the lunar blas were reduced to an
acceptable level by some general modification of the two-body analysis, the errors
in the prediction of perigee would still be too large for many cases of interest
because of the sun.

9



The earth-sun-vehicle geometry is not constant, and it is felt that an effort
toward generality here would call for an unwarranted amount of complexity in on-
board equipment. Thus, it was concluded that each lunar trajectory should be
treated individually.

Modified Two-Body Analysis

With these facts in mind, the two-body prediction equation was adapted for
the reference trajectory in a very simple fashion. In shooting a rifle at a tar-
get a substantial distance away, one soon learns to use the sights (or prediction
system) of the rifle in a modified fashion by aiming above the target to allow
for the drop due to gravity. This same simple principle was applied to the two-
body equation developed in appendix C.

It is desired to hit a perigee of 6,450 km. When the prediction equation
was used with a given velocity increment, range at abort, and a desired perigee
of 6,L50 km, it was observed that the perigee achieved was equal to 6,450 km
minus an error term. Figure 2 illustrates these results.

The modified procedure is to use the prediction equation with the same
velocity increment, the same range at abort, and a perigee equal to 6,450 km plus
the error term. This is directly analogous to target shooting; if your first
shot falls five feet below the target then when you fire the second shot your
sights are set on a point five feet above the target.

When the two-body equation was furnished with a velocity increment, a range
at abort, and a perigee equal to 6,450 km plus the error term, then the perigee
miss distance was reduced. The perigee achieved was equal to 6,450 km minus a
second error term, which is much smaller than the first error calculated. If
this aiming principle 1s applied again with a velocity increment, a range at
abort, and a perigee equal to 6,450 km plus the first and second error terms, then
a further reduction in miss distance will be obtained.

All the modified two-body prediction-equation data presented in this report
were obtained by using in the equation a perigee equal to 6,450 km, plus the
first and second error terms. This was sufficient to reduce the perigee miss
distance to a practical level throughout the entire range of aborts considered.

Table I shows how effectively the moon-sun bias was reduced. The unmodified
results are taken from the graph in figure 2 and are tabulated for convenience in
comparing the results. Out to 250,000 km the perigee miss distance is negligible.
Some error exists at 300,000 and 350,000 km, but it is only appreciable at the
lower abort velocity increments, and it is shown later that these range-velocity
increment combinations are not likely to be used. It is, of course, also true
that the intended trajectory and the actual trajectory achieved by the space
vehicle will differ somewhat because of injection errors and abort thrust errors
so that 1t would be pointless to refine this prediction scheme further.

This modification to the two-body equation is based on the vehicle's being
on a reference trajectory and it is pertinent to discuss the sensitivity of the

10



scheme to deviations from this reference trajectory. It was felt that the
sensitivity to position deviations would be small since the scheme works on range,
and the four-body geometry is not altered appreciably by a few hundred kilometers
of horizontal deviation. In an actual trajectory, velocity deviations before
abort should be small since the crew has direct control over velocity and will
periodically make a correction with vernier rockets. However, a digital simula-
tion was made to obtain some data on this point. A trajectory was computed for
launch conditions identical to the base run except that the launch velocity mag-
nitude was increased 0.50 meter/sec. Aborts from this trajectory, using a veloc-
ity increment of 1.50 km/sec, had perigee errors of less than 5.0 km even at a
range of 300,000 km where a horizontal deviation of 311 km occurred. This was
highly satisfactory and conseguently no further data were obtained on this point.

Error Analysis

Certain errors will appear in the abort maneuver regardless of the manner in
which the abort maneuver is mechanized. The errors considered in this report are
the inaccuracy in the knowledge of position and velocity at abort and the imper-
fect control of the magnitude and direction of the thrust during abort. The sta-
tistical effects of these errors upon the perigee distance attained have been
computed in this report.

A root-mean-square estimate of the errors in position and velocity was
attained following the analysis of Smith in reference 5 wherein optical instru-
mentation, with Gaussian errors of approximately 10 arc seconds magnitude, was
assumed. This analysis employed statistical filter theory to obtain an optimal
estimate of position and velocity from the observations available. An observa-
tion schedule, detailed in appendix D, involving only 40 observations on the way
to the moon was used in the present report.

From the rms estimate of the errors in position and velocity, the techniques
presented by McLean in reference U4 were used to predict root-mean-square errors
in perigee caused by position and velocity information. This involves a linear
prediction scheme about a reference trajectory.

The imperfect control of magnitude and direction of the abort thrust was
studied using a matrix analysis illustrated by Battin in reference 6 where the
errors in magnitude and direction are independent random variables. The errors
were not restricted to the plane of the orbit, and they were assumed to be
Gaussian.

RESULTS AND DISCUSSION

Primary Data

A summary of the data obtained relating minimum return time to the range at
abort is presented in figures 5(a) and 5(b) for the outbound and return legs of
the circumlunar trajectory. The minimum time to return naturally diminishes with

11



increasing amounts of abort velocity capability, but it is observed that the
increase in performance obtained in going from 0.50 km/sec to 1.0 km/sec is very
marked. At less than 0.50 km/sec the abort capability is marginal. Indeed, fig-
ure 6, a plot of total time from injection to perigee versus range at sbort,
shows that an abort which is accomplished at outbound ranges greater than 277,000
km with 0.50 km/sec, is valueless since a quicker return 1s accomplished by doing
nothing. It 1s interesting to note that for the lower abort velocities, it is
possible to return more quickly by aborting on the return leg of the mission even
before the space vehlicle has accomplished half of the trip, in terms of hours, to
the moon. The data of figure 6 determine the location of point B in sketch (a).

The error analysis techniques previously discussed were applied to abort
trajectories calculated with the modified two-body equation. The calculations to
obtain the root-mean-square errors in the knowledge of position and velocity
resulted in position errors of the order of 50.0 kilometers and velocity errors
around 5.0 m/sec. The maximum rms effect of these errors at perigee, due to
both position and velocity errors simultaneously, was 17.0 kilometers. These
results for the outbound leg are shown in table II. The rms errors obtained are
dependent on the observation schedule and more particularly on the relation of
the time of abort to the observation schedule, the errors being smaller after an
observation when the position and velocity are known most accurately. The data
shown here were obtalned from abort just prior to an observation when the posi-
tion and velocity are known least accurately. These errors are tolerable and it
follows then that abort considerations do not necessitate an increased number of
celestial observations for better determination of position and veloclty. These
data also substantiate the argument that the modified two-body equation is not
sensitive to deviations from the reference trajectory.

A statistical estimate of the deviation in perigee height due to faulty
control of the magnitude of the abort rocket thrust was obtained. A l-percent
root -mean-square deviation in the thrust magnitude produced the surprisingly
small errors observed in figure 7. A l-percent error in a 2-1/2 km/sec abort is
a velocity error of 25 m/sec, which is very large relative to normal burnout
errors. These data show that perigee height 1s very insensitive to errors in
velocity magnitude along the thrust axis of the minimum time abort. This thrust
axis is primarily along the radius vector from the earth to the vehicle.

This marked insensitivity becomes understandable if the general conic
equation, in the previously developed hodograph format, is reexamined and the
partial derivatives ORp/OVR and ORp/dVy are evaluated from it. These partial
derivatives are:

oR R,2
—p_ _ B
S e (VR)
d3R. R.2 -R.Z
R .= P (vg)
ovVH Hee

12



and

Bp ,Bp ___F® R
dVe  dVy 2 2 v
R H Re - Rp H

Now if R, is greater than 100,000 km, about 16 Rp, then

3R 3R * 1 VR 1
1

p. TR Rl o L
Svg T Svy 1255 Vgl IELS

since Vg 1s less than 2.0 Vg at these distances. Thus, for the ranges consid-
ered, a unit error in radial velocity after abort is less than one-hundredth as
significant as a unit error in horizontal velocity after abort. This implies that
when velocity correction mechanisms are designed for the lunar mission, particular
attention should be given to the horizontal component errors.

Since the minimum time return requires the abort thrust to be fired almost
radially, errors in the aiming of the abort rocket will produce, almost exclu-
sively, velocity errors in the horizontal plane. By the analysis of the previous
paragraph these errors should be significant. Indeed, perigee errors resulting
from aiming inaccuracies of the abort rocket are of major significance and appear
to be the only serious errors when the modified two-body equation is used. These
aiming error data are shown on figures 8(a) and 8(b) for the outbound and inbound
legs of the trajectory, respectively. An rms error of O.SO0 in aiming the abort
velocity vector was assumed. The perigee error from this source ranges from 50
to 300 km for an abort at only 100,000 km, on the outbound leg with velocity
increments of 0.50 to 2.50 km/sec.

Midcourse Correction Follcwing an Abort

Since it is likely that substantial error will be incurred in the abort
maneuver, it is necessary to judge how much fuel should be saved for a vernier
firing near the earth. Sufficient information is contained in the hodograph equa-
tion to make this judgment when prospective perigee errors are known. The veloc-
ity increment required to correct a perigee error does not change very much with
the source of the error as is shown in figure 9. The central curve on this fig-
ure is an expanded scale version of the R = 100,000 kilometer curve in figure 1.
Tt should be noted that the abscissa scale is expanded a hundred times more than
the ordinate. Also shown on the curve is hodograph data for values of Ry *300
kilometers away from the nominal value. Examination of this graph shows that the
velocity increment required to correct from any trajectory with perigee of 6,750
km to a trajectory with perigee of 6,450 km is never as much as 20 m/sec if the
correction is applied 2t 100,000 km. The applicable area of the hodograph plot is
further restricted by the knowledge that aborts on the way to the moon have eccen-
tricities less than 1 while aborts after perilune have cccentricities between 0.98

and 1.13.
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The penalty caused by making the velocity correction at 20,000 km rather
than at 100,000 km can be ascertained with the aid of figure 10 which presents
hodograph data for a range of 20,000 km and for all trajectories having perigee
errors of #300 km and O. Here it is shown that the velocity increment required
to correct from any trajectory with perigee of 6,750 km to a trajectory with per-
1gee of 6,450 is never more than 110 m/sec if the correction is applied at 20,000
km. In this example then, delaying the correction until the space vehicle is
quite near the earth (20,000 km) costs an extra 80-90 m/sec of velocity increment.
It should be noted that because of the different ordinate and abscissa scales
used in figure 10, the minimum velocity increment between the two curves is not
the perpendicular distance between the curves but more nearly the horizontal
distance between these curves.

Over-all, it is interesting to note that the large end-point error of 300 km
requires a velocity increment correction which is only a few percent of the abort
velocity increment, if the correction is made at 100,000 km.

Graphical Prediction of an Abort Maneuver

An extremely simple abort scheme 1s possible with hodograph data displayed
in figures 9 and 10. If the astronaut can reasonably estimate range, radial
velocity, and horizontal velocity, he can accomplish a safe return even though
both the on-board computer and communications from earth have failed. Preprinted
graphical representations of the hodograph equation at many ranges together with
current estimates of range and the velocity components give sufficient informa-
tion to determine a satisfactory direction and magnitude of the rocket thrust.
The astronaut can choose either the least velocity increment necessary to give
the space vehicle velocity components which lie on the hodograph for the desired
perigee, saving substantial fuel for further corrections, or any larger velocity
increment available to him which will decrease the return time.

Figures 1, 9, and 10 are drawn directly from the general conic equation in
the hodograph format. That is, they present two-body equation information for
returning to a desired vacuum perigee. Similar curves can be drawn from the
results of modified two-body equation calculations. Thus the effects of the moon
and the sun on the reference trajectory can be incorporated into the velocity
component presentation given the astronaut.

CONCLUSIONS

A modified Keplerian orbit was used in a midcourse abort study for determin-
ing the direction of the abort thrust that will achieve a minimum time return,
The minimum time return calculation provides the Information needed for evaluat-
ing the time penalty associated with a fixed point abort. Aborts were considered
on both the outbound and return legs of the flight.
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The errors in making the abort maneuver and their effects on the abort
trajectory were investigated. The velocity increments necessary to correct the
errors introduced at abort were computed at various ranges on the return leg of
the abort.

From the results of this study the following conclusions can be drawn:

1. The modified two-body equation developed in this study is sufficiently
sccurate for determining the direction of the abort thrust to achieve a minimum
time return to satisfactory entry conditions.

2. The modified two-body equation is based on the vehicle's being on a
reference trajectory but the vacuum perigee is predicted with satisfactory accu-
racy when the vehicle is substantially off the reference trajectory.

3. Perigee altitude was found to be insensitive to errors in knowledge of
position and velocity before abort; and also to errors in the magnitude of the
abort velocity increment. However, small errors in aiming the abort rocket
resulted in very large perigee altitude errors. Even though the abort maneuver
may introduce large perigee errors, a vernier correction made at a range of
100,000 kilometers from the earth would require less than 5 percent of the abort
velocity increment to null the root-mean-square perigee error.

4. Abort performance falls off markedly below a velocity increment
capability of 0.50 km/sec. For these lower velocity capabilities, there is only
a limited region on the outbound leg where an outbound abort has a time -advantage
over an inbound abort.

5. If a reasonable estimate of range, radial velocity, and horizontal
velocity can be made, a safe return can be accomplished even though both the on-
board computer and the communications from the earth have failed. Preprinted
graphical representations of the hodograph equation at various ranges, together
with current estimates of these quantities, give sufficient information to
determine the direction and magnitude of the rocket thrust required.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 3, 1963
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APPENDIX A
CONSTANCY OF ORBIT PLANE

It 1s the purpose of thls appendix to show that the minimum time to return
to a prescribed perigee from a given range with a velocity increment restriction
1s given by an orbit 1n the original plane.

This will be accomplished by demonstrating that 1f one desires to change
from a given orbit to another orbit, with specified conic characteristics but
unspecified plane, using a minimum velocity increment, the planes of the two
orbits must be the same. This is sufficient to attaln the objective of this
appendix because 1t may then be argued that 1f e; and Tp, are the best out of
plane conic characteristics available, these same conic characteristics can be
obtained in plane with a lesser velocity increment. The difference 1n velocity
increments can then be used to further reduce TPl'

Let the vehicle be anywhere on its
orbit. Choose an earth-centered axis
system with the positive X axis through
the vehicle and the X-Y plane as the
original orbit plane, sketch (d).

¥ Let \71 = }.(lf + Y‘.lj + ZIE be the
F. N . velocity vector which together with the
AN N initial Re determines a trajectory with
A\ N\ o the desired conic characteristics. If we
\\ (1200 rotate the Re, V; plane about the X
X \(/. axls into the X-Y¥ plane, the velocity
(hort0r0) (e, ¥2,0) vector is now Vs = Xol + ¥oj + (0)k.
Sketch (d) If ¢ 1s the angle of rotation about
the X axis, then
}.{l l O O ).(2 }.(l = 5(2
?1 =10 cos O sin @ Yg or Yl = iz cos @
21 0 -sin @ cos @ 7o Zl = Jfg sin @

For any value of o, (0 < . ¢ < 2r) a velocity vector is specified and a plane
is determined through Re and V. In this plane a trajectory exists, determined
by Re and V which has the specified conic parameters.

The velocity increment AV = 1 - Vo and

lAV' = (5(1 - 5{0)2 + (il - iO)Z + 212 = ()‘(2 - ).(0)2 + (ig cos ¢ - ?0)2 + -§-22 Sin2cp
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AP = R b TR v R P 4 1? - hofe - Zhole cos o
and |AV|® has extremal values at 2¥o¥p sin ¢ = 0 or at ¢ = 0, x.

Now Ty = XyT + Y13 + 21K = Xo1 + Yo cos @ J,- Yo sin ¢ k and Vi is in the

X-Y plane for both ¢ = 0 and ¢ = x. If Y, and Yo have opposite signs, the

minimum value of |AV| is obtained at ¢ = x and the maximum occurs at © =

If Yo and Yo have the same sign, the minimum value of |AV| 1s obtained at
® = O and the maximum value occurs at ¢ = x. Thus for minimum velocity
increment the two orbits are coplanar.

0.
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APPENDIX B
MINTMUM TIME TO RETURN REQUIRES MINIMUM VR

It is the purpose of this appendix to show that the minimum time to return
to a prescribed perigee from a given range is associated with the algebraic
minimum of available radial velocity components. Equation (Bl) below is the
previously developed hodograph eguation.

Rp® 2ueRp 1
Vy® = ———= VR® + (B1)
B " g2 Rp2 Re \Re + Rp

Multiplying equation (Bl) by Re? - Rp2 and transposing gives:

ueR
2y 2 _ 2 2 2 D
ReSVR® = (Re® - Rp ) (VveZ + VR®) - Ro (Re - Rp)
or
R.Z - R 2R
VR2 = -——RE'L Ve - 3P (Re - Rp) (BE)
€ R
e
The standard form of the general conic equation is:
Qe Me
VZ:_-_ l - e BB
e (1-e) (83)

Now by equation (B2) it is clear that if |[Vgy| > [VRy| then |Vol > |Vy]| for
any given Re and Rp, with Re > Rp. Similarly, by equation (B3) if [Va| > V|
then ez > ey; therefore, if |VRol > IVgy| then ex > e;.

It is now sufficient to show that on the outgoing leg, where Vg5 > O,
minimum time and minimum e go together while on the incoming leg, where VR <O,
minimum time and maximum e go together.

The conic eguation, in polar coordinates, is:
H2
He

Re = 1+ e cos g

Differentiating this expression and using R2% = H gives

. e e el
Re = Eg-—-sin 8 = EE—-VI - cos®9 = < 1 - cos®6

i i NHeRp (1 + e)

Ra = Fe _ue Rez(e - 1) + ZReRp - Rp2(e + 1)
e at D
\Rp Re2
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and
JR R
b = dRe

Jie VReZ(e - 1) + ZRRp - RpZ(e + 1)

dt

The time to return to perigee on inbound orbit

. prJRp Re dRe
in =
R, VHewReZ(e - 1) + ZReRp - Rp“(e + 1)

where Ue, Rp, and e are parameters in the integral.

= 2 - 2
de . Ro Jie @ [Rez(e - 1) + 2ReRp - RpZ(e + 1)]3/2

R Fe
r 2 2 2)dRr
Ro  Jhe He (Rez(e - 1) + 2ReRp - Rp®(e + 1,)]3/2

dTin 1 Rp Me R62 gl
oA ——— e (BY4)

In this form we see how to choose the sign of the radical which determines
the sign of the integrand. We may also write:

ReZ(e - 1) + 2ReRp - RpZ(e + 1) = (Re - Rp)[+(Re + Rple - (Re - Rp)]

so that
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This integrand has singularities at perigee and at apogee. The apogee singularity
does not lie within the region of integration but the perigee singularity is at
one end point of the region of integration. However, reference 7 shows that this
integral is convergent; therefore, dTin/de <0 for all e. Since Ty, 1is a
continuous function of e, we now know that Ti, decreases with every increase in
e. Therefore, on the incoming leg the minimum time solution for a given range and
perigee altitude is associated with the maximum available eccentricity.

On the outgoing leg orbits with eccentricities equal to or greater than one
do not return or have infinite return time. It is only necessary then to consider

elliptical orbits so we may write for the time to return to perigee on the out-
going leg:

Rp3 1/2
TOU.t = (27'() }.17——@ 1 - e)ail - Tin

where the period of the complete elliptical orbit is

Rps
(gn){ue(l - 6)3]

1/2

dT out Rp3 ]2 3 ar
i <2“)[‘&1 ( 5) (1 - )2 (1) - 2

de

Both terms here are positive for all e < 1.0. Therefore, on the outgoing
leg, the minimum time solution for a given range and perigee altitude is associ-
ated with the minimum avallable eccentricity. Thus it has been shown that the
minimum time to return is associated with the algebralic minimum of available
radial velocity components.
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APPENDIX C

DERIVATION OF THE ABORT-VELOCITY PREDICTION EQUATION

The derivation of the equation, whose solution yields the direction of the
abort thrust for a minimum return time trajectory, is obtained by combining the
hodograph equation with the equation for the change in velocity.

The hodograph equation is

2 2Heo
2 _ P 2 =
Vg = z 'R "R(T 7 0 (c1)
L -9
and the equation for the change in velocity, 4V, is given by
(aV)2 = (Vg - V)% + (VR - Vgo)® (c2)
Solving equation (Cl) for Vy, substituting into equation (c2), and clearing
yields
e | 2 2
1 2 o 2 _ 2 ef 1 ___p 2 eP
L " VB® - VRGTR + VR + VRS (aN2 + 755 e 1. R*R(T + o
(€3)
Letting
2ep
- v2 4+ v2 - 2 €
Q= Vi * VR - (DT gy

equation (C3) becomes

1 Z . a “VRg 3 2Q 2 hvﬁoo 2
—) V" + VR™ + = + bV - Vg
1 - 02 1 - p2 1l-p 0 1 -p2

BV
+ (—l#QVRO> VR + ‘:QZ - ﬁ] =0 (C)-L)
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2
1 .
Dividing both sides of equation (C4) by <;———gé> gives

VRt + l:-hVRO(l - pz)] vg® + (1 - 0®) {2Q - WE % £ lLV}‘?{o(l - 02)} Vg®

8oV
+ (1 -0%)% (—MQVRO> Vg + (1 - 0%)® [Qg - R(i—fiﬂ =0 (c5)

This equatiocn, a gquartic, can then be solved for the required value of VR
which may be substituted into equation (Cl) to give the required Vyg. Such a
mathematical solution is fairly lengthy. A graphical solution, however, is quite
simple and in many cases is sufficiently accurate.
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APPENDIX D

OBSERVATION AND VELOCITY CORRECTION SCHEDULE USED ON OUTGOING TRAJECTORY

Right ascension, declination, and subtended angle of the appropriate body are
measured simultaneously at each observation.

T = 0.0 1s injection time.

T = 3.5 hr begin 8 earth observations space 0.5 hour apart.

T = 8.0 hr begin 7 moon observations space 0.5 hour apart.

T = 12.0 hr make velocity correction.

T = 24.0 hr begin L earth observations space 1.0 hour apart.
T = 28.0 hr begin 8 moon observations space 1.0 hour apart.

T = 36.0 hr make velocity correction.

T = 64.0 hr begin 4 moon observations space 1.0 hour apart.
T = 68.0 hr begin 4 earth observations space 1.0 hour apart.
T = 72.0 hr make velocity correction.

The instruments used in the observations are assumed to have a minimum rms
error of 10 arc seconds with a mean of zero. The error increases as observed
body is approached.

Abort Rocket: The aiming error here was taken as O.5o rms with zero mean.
In conjunction with the aiming error, calculations were made for a thrust magni-
tude error of 1.0 percent and also for a flat 1.0 m/sec cutoff error.

Base Trajectory: Injection occurs on Feb. 10, 1966, with Ry = 6,499.02 km,

Vo = 11.001372 km/sec, and yo = -1.26X107® deg. Perilune is reached in 83.72
hours and is 5,713 km (1,738 + 3,975).
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